Purpureocillium lilacinum (HYPOCREALES: OPHIOCORDYCIPITACEAE) COMO BIOCONTROLADOR DE Nacobbus aberrans (TYLENCHIDA: PRATYLENCHIDAE) Y MELOIDOGYNE INCOGNITA (TYLENCHIDA: MELOIDOGYNE) EN TOMATE cv. RÍO GRANDE

Autores/as

  • Rómulo García-Velasco
  • Edgar Andrés Chavarro-Carrero Universidad Autónoma del Estado de Morelos

Palabras clave:

Nematodos agalladores, nematicidas, bionematicidas, índice de agallamiento

Resumen

Dentro de los problemas fitosanitarios más importantes del tomate en México, se registra el daño de nematodos agalladores, como el ocasionado por Nacobbus aberrans (Thorne) Thorne y Allen y Meloidogyne incognita (Kofoid y White) Chitw. El manejo tradicional consiste en la aplicación de nematicidas sintéticos; sin embargo, la problemática ambiental asociada a estos productos impulsa el estudio de alternativas nuevas. En ese sentido, se evaluó el control de tres productos formulados con Purpureocillium lilacinum y del nematicida fluensulfone contra N. aberrans y M. incognita en plantas de tomate. Nemaroot®, BioAct Prime®, Nematicida PI® y Nimitz 480 EC® fueron aplicados a dosis comercial; asimismo, se incluyeron controles inoculados con N. aberrans o M. incognita sin tratar y un control sin inoculaciones. El diseño experimental fue completamente al azar, con siete tratamientos y diez repeticiones. Se evaluó el índice de agallamiento (IA), así como el número de masas de huevos (NMH), los
huevos por gramo de raíz (NHG) y la efectividad biológica (EB). Los bionematicidas redujeron drásticamente el IA, NMH y NHG; de igual manera, el nivel de control fue mayor a medida que se incrementó la concentración de esporas en el producto, lo cual se reflejó en la EB en un rango de 76.6-90.1% para N. aberrans y 77.2-92.4% en M. incognita; en este mismo orden, con fluensulfone fueron de 61.7 y 65.5%.

Citas

Abbott WS. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265-267. https://doi.org/10.1093/jee/18.2.265a

Bayer CropScience. [internet]. 2020. La revolución nematicida. Folleto Velum Prime, Bayer AG. España. [cited 2020 Julio 31]. Disponible en: https://www.cropscience.bayer.es/~/media/Bayer%20CropScience/Country-Spain-Internet/labels/Velum%20Prime.ashx?force=1

Beeman AQ, Tylka GL. 2018. Assessing the effects of ILeVO and VOTiVO seed treatments on reproduction, hatching, motility, and root penetration of the soybean cyst nematode, Heterodera glycines. Plant Disease 102: 107-113. https://doi.org/10.1094/PDIS-04-17-0585-RE

Cabrera AJ, Valdovinos G, Mora G, Rebollar A, Marbán N. 2014. Ocurrencia de Nacobbus aberrans en cultivos hortícolas del noroeste de Michoacán. Nematropica 44: 107-117.

Cabrera-Hidalgo AJ, Valadez-Moctezuma E, Marbán N. 2015. Efecto del fluensulfone sobre la movilidad in vitro, y la reproducción y agallamiento de Nacobbus aberrans en microparcelas. Nematropica 45: 59-71.

Cayrol J-C, Djian C, Pijarowski L. 1989. Study of the nematocidal properties of the culture filtrate of the nematophagous fungus Paecilomyces lilacinus. Revue de Nematology 12(4): 331-336.

Cepeda-Siller M, García-Calvario JM, Hernández-Juárez A, Ochoa-Fuentes YM, Garrido-Cruz F, Cerna-Chávez E, Dávila-Medina MD. 2018. Toxicidad de extractos de Carya illinoinensis (Fagales: Junglandaceae) contra Meloidogyne incognita (Tylenchida: Heteroderidae) en

tomate. Ecosistemas y Recursos Agropecuarios 5(13): 143-148.

Chavarro-Carrero EA, Valdovinos-Ponce G, Gómez-Rodríguez O, Nava-Díaz C, Aguilar-Rincón VH, Valadez-Moctezuma E. 2017. Respuesta de la línea 35-3 de chile tipo huacle (Capsicum annuum) a dos poblaciones de Nacobbus aberrans. Nematropica 47: 74-85.

Companioni B, Domínguez G, García R. 2019. Trichoderma: su potencial en el desarrollo sostenible de la agricultura. Biotecnología Vegetal 19(4): 237-248.

Dahlin P, Eder R, Consoli E, Krauss J, Kiewnick S. 2019. Integrated control of Meloidogyne incognita in tomatoes using fluopyram and Purpureocillium lilacinum strain 251. Crop Protection 124: 1-7. https://doi.org/10.1016/j.cropro.2019.104874

InfoStat Software Estadístico. [internet]. 2020. Centro de Transferencia InfoStat. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. [2020 Feb 09]. Disponible en: http://www.infostat.com.ar

Djian C, Pijarowski L, Ponchet M, Arpin N, Favre-Bonvin J. 1991. Acetic acid: A selective nematicidal metabolite from culture filtrates of Paecilomyces lilacinus (Thom) Samson

and Trichoderma longibrachiatum Rifai. Nematologica 37: 101-112. https://doi.org/10.1163/187529291X00105

Eves-van den Akker S, Lilley CJ, Danchin EGJ, Rancurel C, Cock PJA, Urwin PE, Jones JT. 2014. The transcriptome of Nacobbus aberrans reveals insights into the evolution of sedentary endoparasitism in plant-parasitic nematodes. Genome Biology and Evolution 6: 2181-2194. https://doi.org/10.1093/gbe/evu171

Faske TR, Hurd K. 2015. Sensitivity of Meloidogyne incognita and Rotylenchulus reniformis to Fluopyram. Journal of Nematology 47(4): 316-321.

Freitas LG, Ferraz S, Muchovej JJ. 1995. Effectiveness of different isolates of Paecilomyces lilacinus and an isolate of Cylindrocarpon destructans on the control of Meloidogyne javanica. Nematropica 25: 109-115.

Huang WK, Cui JK, Liu SM, Kong LA, Wu QS, Peng H, Hea WT, Sunb JH, Peng DL. 2016. Testing various biocontrol agents against the root-knot nematode (Meloidogyne incognita) in cucumber plants identifies a combination of Syncephalastrum racemosum and Paecilomyces lilacinus as being most effective. Biological Control 92: 31-37. http://doi.org/10.1016/j.biocontrol.2015.09.008

Huang B, Li J, Wang Q, Guo M, Yan D, Fang W, Ren Z, Wang Q, Ouyang C, Li Y, Cao A. 2018. Effect of soil fumigants on degradation of abamectin and their combination synergistic effect to root-knot nematode. PLoS One 13: e0188245. https://doi.org/10.1371/journal.pone.0188245

Kearn J, Ludlow E, Dillon J, O’Connor V, Holden-Dye L. 2014. Fluensulfone is a nematicide with a mode of action distinct from anticholinesterases and macrocyclic lactones. Pesticide Biochemistry and Physiology 109: 44-57. https://doi.org/10.1016/j.pestbp.2014.01.004

Khan A, Williams K, Molloy MP, Nevalainen H. 2003. Purification and characterization of a serine protease and chitinases from Paecilomyces lilacinus and detection of chitinase activity on 2D gels. Protein Expression and Purification 32: 210-220. https://doi.org/10.1016/j.pep.2003.07.007

Khan A, Williams KL, Nevalainen HKM. 2004. Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biological Control 31: 346-352. https://doi.org/10.1016/j.biocontrol. 2004.07.011

Kiewnick S, Sikora RA. 2006. Biological control of the rootknot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biological Control 38: 179-187. https://doi.org/10.1016/j.biocontrol.2005.12.006

Kyndt T, Vieira P, Gheysen G, de Almeida-Engler J. 2013. Nematode feeding sites: Unique organs in plant roots. Planta 238: 807-818. https://doi.org/10.1007/s00425-013-1923-z

Luangsa-Ard J, Houbraken J, Van Doorn T, Hong SB, Borman AM, Hywel-Jones NL, Samson RA. 2011. Purpureocillium, a new genus for the medically important Paecilomyces lilacinus. Fems Microbiology Letters 321(2): 141-149. https://doi.org/10.1111/j.1574-6968.2011.02322.x

Núñez-Camargo MC, Carrión G, Núñez-Sánchez ÁE, López-Lima JD. 2012. Evaluación de la patogenicidad in vitro de Purpureocillium lilacinum sobre Globodera rostochiensis.

Agroecosistemas Tropicales y Subtropicales 15: S126-S134.

Oka Y, Shuker S, Tkachi N. 2012. Systemic nematicidal activity of fluensulfone against the root-knot nematode Meloidogyne incognita on pepper. Pest Management Science 68: 268-275. https://doi.org/10.1002/ps.2256

Park J-O, Hargreaves JR, McConville EJ, Stirling GR, Ghisalberti EL, Sivasithamparam K. 2004. Production of leucinostatins and nematicidal activity of Australian isolates of Paecilomyces lilacinus (Thom) Samson. Letters in Applied Microbiology 38: 271-276. https://doi.org/10.1111/j.1472-765X.2004.01488.x

[SAGARPA] Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. [internet]. 2015. Modificación a la Norma Oficial Mexicana NOM-032-FITO-1995. Por la que se establecen los requisitos y especificaciones fitosanitarios para la realización de estudios

de efectividad biológica de plaguicidas agrícolas y su Dictamen Técnico. [cited 2020 Marzo 26]. Disponible en: http://www.dof.gob.mx/nota_detalle.php?codigo=5403310&fecha=11/08/2015

[SIAP] Servicio de Información Agroalimentaria y Pesquera. [internet]. 2020. Avances de siembras y cosechas. [cited 2020 Marzo 26]. Disponible en: http://infosiap.siap.gob.mx:8080/agricola_siap_gobmx/AvanceNacionalCultivo.do

Taylor AL, Sasser JN. 1978. Biology, Identification and Control of Root-knot Nematodes (Meloidogyne species). CABI. Raleigh, USA.

Townsed GR, Heuberger JW. 1943. Methods for estimating losses caused by diseases in fungicides experiments. The Plant Disease Report 27: 340-343.

Vrain TC. 1977. A technique for the collection of larvae of Meloidogyne spp. and a comparison of eggs and larvae as inoculum. Journal of Nematology 9: 249-251.

Publicado

2020-11-05

Número

Sección

Artículos Científicos